Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.01.429219

ABSTRACT

The ongoing global pandemic of Coronavirus Disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein is a major immunogenic and protective protein, and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2; denoted as VIU-1005. The design was based on the synthesis of codon-optimized coding sequence for optimal mammalian expression of a consensus full-length S glycoprotein. The successful construction of the vaccine was confirmed by restriction digestion and sequencing, and the protein expression of the S protein was confirmed by western blot and immunofluorescence staining in mammalian cells. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models four weeks post three injections with 100 g of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Importantly, such immunization induced long-lasting IgG response in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower doses such as 25-50 g or less number of doses were able to elicit significantly high levels of Th1-biased systemic S-specific IgG antibodies and nAbs via intramuscular immunization compared to needle immunization. Compared to the intradermal needle injection which failed to induce any significant immune response, intradermal needle-free immunization elicited robust Th1-biased humoral response similar to that observed with intramuscular immunization. Furthermore, immunization with VIU-1005 induced potent S-specific cellular response as demonstrated by the significantly high levels of IFN-{gamma}, TNF and IL-2 cytokines production in memory CD8+ and CD4+ T cells in BALB/c mice. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting and Th1-skewed immune response in mice. Furthermore, we show that the use of needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.31.426979

ABSTRACT

BACKGROUND: There has been considerable speculation regarding the potential of PVP-I nasal disinfection as an adjunct to other countermeasures during the ongoing SARS-CoV-2 pandemic. Nasodine is a commercial formulation of 0.5% PVP-I that has been evaluated for safety and efficacy in human trials as a treatment for the common cold, including a Phase III trial (ANZCTR: ACTRN12619000764134). This study presents the first report of the in vitro efficacy of this formulation against SARS-CoV-2. METHODS: We conducted in vitro experiments to determine if the PVP-I formulation inactivated SARS-CoV-2 using two independent assays and virus isolates, and incorporating both PCR-based detection and cell culture methods to assess residual virus after exposure to the formulation. RESULTS: Based on cell culture results, the PVP-I formulation was found to rapidly inactivate SARS-CoV-2 isolates in vitro in short timeframes (15 seconds to 15 minutes) consistent with the minimum and maximum potential residence time in the nose. The Nasodine formula was found to be more effective than 0.5% PVP-I in saline. Importantly, it was found that the formulation inactivated culturable virus but had no effect on PCR-detectable viral RNA. CONCLUSIONS: The PVP-I formulation eliminated the viability of SARS-CoV-2 virus with short exposure times consistent with nasal use. PCR alone may not be adequate for viral quantification in nasal PVP-I studies; future studies should incorporate cell culture to assess viral viability. Nasal disinfection with PVP-I may be a useful intervention for newly-diagnosed COVID-19 patients to reduce transmission risk and disease progression to the lower respiratory tract.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.21.20198309

ABSTRACT

The Coronavirus Disease 2019 (COVID-19), caused by the novel SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Immunological surrogate markers, in particular antigen-specific responses, are of unquestionable value for clinical management of patients with COVID-19. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized patients with RT-PCR confirmed COVID-19 infection. Our data show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Notably, anti-S and -N IgG, peaked 20-40 day after disease onset, and were still detectable for at least up to 70 days, with nAbs observed during the same time period. Moreover, nAbs titers were strongly correlated with IgG antibodies. Significantly higher levels of nAbs as well as anti-S1 and N IgG and IgM antibodies were found in patients with more severe clinical presentations, patients requiring admission to intensive care units (ICU) or those with fatal outcomes. Interestingly, lower levels of antibodies, particularly anti-N IgG and IgM in the first 15 days after symptoms onset, were found in survivors and those with mild clinical presentations. Collectively, these findings provide new insights into the characteristics and kinetics of antibody responses in COVID-19 patients with different disease severity.


Subject(s)
COVID-19
4.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202005.0188.v2

ABSTRACT

As the coronavirus disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2, continues to spread rapidly around the world, there is a need for well validated serological assays that allow the detection of viral specific antibody responses in COVID-19 patients or recovered individuals. In this study, we established and used multiple indirect Enzyme Linked Immunosorbent Assay (ELISA)-based serological assays to study the antibody response in COVID-19 patients. In order to validate the assays we determined the cut off values, sensitivity and specificity of the assays using sera collected from pre-pandemic healthy controls, COVID-19 patients at different time points after disease-onset, and seropositive sera to other human coronaviruses. The developed SARS-CoV-2 S1 subunit of the spike glycoprotein and nucleocapsid (N)-based ELISAs not only showed high specificity and sensitivity but also did not show any cross-reactivity with other CoVs. We also show that all RT-PCR confirmed COVID-19 patients tested in our study developed both virus specific IgM and IgG antibodies as early as week one after disease onset. Our data also suggest that the inclusion of both S1 and N in serological testing would capture as many potential SARS-CoV-2 positive cases as possible than using any of them alone. This is specifically important for tracing contacts and cases and conducting large-scale epidemiological studies to understand the true extent of virus spread in populations.


Subject(s)
COVID-19
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-38889.v1

ABSTRACT

Background: The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally. Although several commercial SARS-CoV-2 rapid serological assays have been developed, little is known about their performance and accuracy in detecting SARS-CoV-2 specific antibodies in COVID-19 patient samples. Method: We have evaluated the performance of seven commercially available rapid lateral flow immunoassay (LFIA) serological assays obtained from different manufacturers, and compared them to in-house developed and validated ELISA assays for the detection of SARS-CoV-2 specific IgG and IgM antibodies in COVID-19 patients. Results: While all evaluated LFIA assays showed high specificity, our data showed a significant variation in sensitivity of these assays in which it ranged from 0 to 54% for samples collected early during infection (3-7 days post symptoms onset) and from 54 to 88% for samples collected at later time points during infection (8-27 days post symptoms onset). Conclusion: Commercially available LFIA assays for detection of SARS-CoV-2 specific antibodies may be specific and show high degree of variation in their sensitivity. Further evaluations and validation of rapid serological assays is needed before being routinely used in detecting IgM and IgG in COVID-19 patients.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL